Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Harmful Algae ; 110: 102144, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887015

RESUMO

Ostreopsis cf. ovata is a benthic dinoflagellate very common in tropical and temperate coastal areas, particularly in the Mediterranean Sea. This species is also found in the plankton, i.e. swimming in the water column or in aggregates floating at the sea surface. The potential links between the planktonic and benthic populations influencing their relative distribution in the water column and attached to the benthic substrate are poorly understood. To shed light on this question, a high-frequency temporal monitoring was conducted in the Villefranche bay (France) to determine the abundance of (1) epibenthic cells attached to macroalgae, (2) planktonic cells in the water column and (3) cells in aggregates floating at the sea water surface (hereafter, referred to sea surface cells) . This monitoring was realized over 3 consecutive years (2018, 2019 and 2020) and at different phases of the bloom (exponential phase - 2020, peak - 2019 and decline phase - 2018). Strong variations in benthic and planktonic O. cf. ovata abundances were observed over the 24 h sampling cycles conducted in three consecutive years. The three populations, planktonic, benthic and sea surface cells, exhibited the highest numbers during the day (light) hours and lowest values at night in 2018 and 2019. In 2020, however, benthic abundances did not differ significantly between light and dark periods. Moreover, epibenthic cells abundances peaked in the morning, followed by the peak of the cells in the plankton and in the surface aggregates during the afternoon. Monitoring of O. cf. ovata is often based on a single sampling per day without precise indications of sampling time and shows great variability in O. cf. ovata abundances. Our observations of daily variations in cell abundances along the water column clearly indicate that time and water column depth of sampling constitute a great source of variability and have to be considered when designing new monitoring strategies to reduce variability and to harmonize data acquisition and international comparisons.


Assuntos
Dinoflagellida , França , Mar Mediterrâneo , Plâncton , Água do Mar
2.
Environ Microbiol ; 23(9): 4956-4979, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33497010

RESUMO

In a future scenario of increasing temperatures in North-Atlantic waters, the risk associated with the expansion of the harmful, benthic dinoflagellate Ostreopsis cf. siamensis has to be evaluated and monitored. Microscopy observations and spatio-temporal surveys of environmental DNA (eDNA) were associated with Lagrangian particle dispersal simulations to: (i) establish the current colonization of the species in the Bay of Biscay, (ii) assess the spatial connectivity among sampling zones that explain this distribution, and (iii) identify the sentinel zones to monitor future expansion. Throughout a sampling campaign carried out in August to September 2018, microscope analysis showed that the species develops in the south-east of the bay where optimal temperatures foster blooms. Quantitative PCR analyses revealed its presence across almost the whole bay to the western English Channel. An eDNA time-series collected on plastic samplers showed that the species occurs in the bay from April to September. Due to the water circulation, colonization of the whole bay from the southern blooming zones is explained by inter-site connectivity. Key areas in the middle of the bay permit continuous dispersal connectivity towards the north. These key areas are proposed as sentinel zones to monitor O. cf. siamensis invasions towards the presumably warming water of the North-East Atlantic.


Assuntos
Dinoflagellida , Baías , Dinoflagellida/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...